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Clustering properties of a generalized critical Euclidean network
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Many real-world networks exhibit a scale-free feature, have a small diameter, and a high clustering tendency.
We study the properties of a growing network, which has all these features, in which an incoming node is
connected to itsi th predecessor of degreeki with a link of length, using a probability proportional toki

b,a.
For a.20.5, the network is scale-free atb51 with the degree distributionP(k)}k2g andg53.0 as in the
Barabási-Albert model (a50,b51). We find a phase boundary in thea-b plane along which the network is
scale-free. Interestingly, we find a scale-free behavior even forb.1 for a,20.5, where the existence of a
different universality class is indicated from the behavior of the degree distribution and the clustering coeffi-
cients. The network has a small diameter in the entire scale-free region. The clustering coefficients emulate the
behavior of most real networks for increasing negative values ofa on the phase boundary.
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Recent studies of many complex real-world networks
diverse nature, e.g., social networks, biological networ
electronic communication networks, etc., reveal some st
ing similarities in their underlying structures@1#. The diam-
eter D, a measure of the topological extension of the n
work, the clustering coefficientC, a measure of the loca
correlations among the links of the network, and the no
degree distributionP(k) are some of the few importan
quantities which exhibit the similarities among the differe
networks. Many of these networks exhibit small-worl
network like properties@2#, i.e., the diameterD(N) of the
network scales logarithmically with the number of nodesN,
while the clustering coefficient has a high value. In some
these networks, there is no characteristic scale manifeste
the typical power law decay of the tail of the degree dis
bution: P(k)}k2g @3#, whereP(k) is the number of nodes
which are linked withk other nodes. These networks a
called scale-free networks~SFN!.

Typically, the clustering coefficient measures the con
tional probability that an arbitrary pair of nodes are linke
provided both are linked to a third node. The clustering
efficient can be studied as a function of two different va
ables: C(N), the clustering coefficient per node averag
over all N nodes as a function of the network sizeN, and
C(k), the clustering coefficient per node averaged over
nodes with degreek as a function ofk. Obviously, C(N)
5SkP(k)C(k)/SkP(k).

In some recent studies@4,5#, it was shown that several rea
networks, such as the actor network, language network,
Internet at the autonomous system level, etc., which
known to exhibit a scale-free behavior and have small dia
eters, have another common feature, i.e.,C(k) has a power
law dependence:C(k)}k21, whereas the total clustering co
effcient C(N) has a high value.

Attempts to capture the three features of small diame
high clustering, and absence of a characteristic scale, w
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occur in many real-world networks, in a single model, ha
been faced with certain difficulties. The first model to mim
a small-world network is the Watts-Strogatz~WS! model@2#.
Here, the nodes are arranged on a ring with links to
nearest neighbors, and small-world features can be achie
by rewiring the nearest neighbor bonds to randomly link
arbitrary pair of nodes even with a very small probabili
However, the nodal degree distribution in the WS mod
failed to show a scale-free feature. The Baraba´si-Albert ~BA!
model is a prototype of a SFN in which the network is grow
by adding nodes one by one, and a new node gets attach
an older one with a probability proportional to its degre
Although the scale-free property was successfully achie
and the network had a small diameter, the clustering coe
cient C(N) showed a power law decay withN @6,1#, while
C(k) remained a constant withk @1,4#, thus failing to capture
the feature of high clustering tendency of real networks.

Successful attempts to capture all the desirable feature
a network have been made by defining other mod
@4,6,7,9–11# subsequently. For example, in a determinis
growing graph@7#, which is argued to simulate a citatio
network, exact calculations showed that it has a small dia
eter, a scale-free feature, as well asC(k)}1/k. In Refs.
@9,11#, suitable modifications are made to generate tria
~and consequently a high clustering coeffcient! in an other-
wise BA type of growing network. In Refs.@8,6#, an old node
is deactivated with a probability proportional to its inver
degree in a growing network, and with an additional para
eter, which determines the probability of attachment to act
or inactive nodes, the desired features of a real-world n
work are achieved. In Ref.@10#, spatial distances have bee
incorporated in some specified manner which also gave
desired features of a real network to a large extent. A po
law dependence ofC(k) can be obtained in deterministic an
stochastic scale-free networks with hierarchical structure a
@4#.

While in a majority of real-world scale-free network
C(k)}1/k, some other networks such as the Internet rou
network, the power grid network@4,5# of the Western United
states and the Indian railway network@12# ~which does not
©2003 The American Physical Society04-1
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have a scale-free behavior! showed a different behavior
C(k) shows no dependence or logarithmic dependence ok.
In Ref. @4#, this behavior was argued to be due to the pr
ence of geographical organization in such networks in
sense that there is an actual physical connection betwee
nodes and the networks are defined in real space. A com
son of the clustering coefficients in a model network w
and without geographical organization could therefore h
in understanding the relation between geographical organ
tion and clustering better. It should be pointed out here t
C(k) is also a constant in the BA model where a metric is
defined.

In a network defined in real space, the spatial dista
between the nodes is expected to play an important rol
constructing the links. On the other hand, the rule of pre
ential attachment has been very successful in achieving
scale-free feature and the small diameter of a network.
have, therefore, considered a growing network in which
preferential attachment probability of nodei explicitly de-
pends jointly on theath power of the degreeki of the node
as well as thebth power of the length of the link, connect-
ing this node:

p i;ki
b,a. ~1!

The two parametersa andb can be tuned continuously an
independently over all real values. Here, we would like
mention that although some networks are not defined in
space, spatial distances are still expected to be implic
involved, e.g., in a social network, people in the same loc
ity are much more likely to know and influence each oth
Although the concept of geographical locality does not ex
explicitly in all networks, one can still define a ‘‘closenes
factor in many networks, e.g., in the citation network, a p
per is likely to be cited with a higher probability when i
contents are close to that of the citing paper.

In some earlier studies@10,13–17#, spatial dependence i
a growing network has been studied where the attachm
probability is dependent on the spatial distances between
node. In Ref.@10#, the clustering coefficients were also ca
culated. However, the spatial dependence was not inco
rated in the way it could be systemetically studied. In t
present study, the aims are~a! to identify the regions where
the network is scale free in thea-b plane,~b! to study the
behavior of the clustering coefficient as a function of t
parametersa andb, and~c! to check whether the diamete
of the network and the average shortest distances scale
rithmically with the number of nodes.

The attachment rule in Eq.~1! was in fact proposed by
Yook et al. @13# in the context of modeling the Internet at th
router level. An additional parameter, namely, the fractal
mension of the space was also considered as the phy
layout of the nodes in this network form a fractal set det
mined by the population of the globe. The model was stud
for a few points in the parameter space~for the fractal di-
mension equal to 1.5! to find suitable values of the param
eters for the Internet at the router level which turned ou
be a521, b51.
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In the present network, each incoming node gets bon
to m distinct nodes. In order to study clustering propertiesm
should be at least equal to 2 (m51 would lead to a treelike
structure with no loops and all clustering coefficients a
trivially zero here.! Results for some limiting cases of th
model defined by Eq.~1! are known. Thea50 andb51
case corresponds to the scale-free BA network@3#. Networks
with a50 and arbitrary values ofb, considered in@18#,
showed that a scale-free behavior existed only forb51. For
b.1, there is a tendency of the incoming nodes to get c
nected to a single node and this behavior is termed ‘‘ge
tion.’’ For b,1.0, the behavior of the degree distribution
stretched exponential. The effect of Euclidean distances
incorporated in a BA kind of network@13,15,16# by keeping
a nonzero andb51, where the network is defined in
d-dimensional Euclidean plane. It was found that the sca
free behavior persists above a certain critical value ofa
which depends on the spatial dimensionality@15#. Below this
value ofa, the stretched exponential behavior of the deg
distribution was again observed. According to@16#, it was
concluded from the anaysis of the degree distribution t
ac521.0 in one dimension, but in Ref.@15#, some further
analyses were made~e.g., the study of the cumulative degre
distribution, etc.! which led to the conclusion thatac5
20.5.

We considered a network on a one-dimensional sp
whose nodes are represented by points on thex axis and their
positions are randomly selected within the unit interval:
,x<1 with uniform, identically, and independently distrib
uted probabilities. At the initial stage of timet50, we have
a set ofm0 connected nodes. Then, at each time stept we
introduce a new node and link it to a previous nodei with a
probability given in Eq.~1!. We vary botha and b and
observe the behavior ofP(k) to obtain a phase diagram
Results form05m51 andm05m53 showed that the criti-
cal behavior is independent of the value ofm as in the BA
model. We noted the following interesting features.

~1! In thea-b plane, there exists a phase boundary alo
which the network is scale-free. Above this boundary
shows a gelationlike behavior, as in Ref.@18#. Below this
boundary, the degree distribution is stretched exponentia
was observed in Refs.@15,16,18#.

~2! Scale-free behavior is observed to occur at the criti
value bc51 for all values ofa>20.5. It occurs at higher
values ofb when the values ofa are lower. From the data
for values ofa,22.0, we find that the phase boundary c
be fit to a linear form given by the equationac1bc50.

~3! Although the scale-free property is observed along
entire phase boundary, there is a difference in the behavio
the degree distributionP(k). While P(k);k2g everywhere,
g;2.7 for a,20.5 andg53.0 ~as in the BA model! for
a.20.5.

The phase diagram is shown in Fig. 1. We would like
emphasize on two points from the above observations. F
even though the casebÞ1 has been studied earlier@18#, the
only point at which the scale-free behavior was observed
at bc51, while here one can get a scale-free behavior e
at bc.1 by tuning the distance dependence factor. Seco
4-2
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CLUSTERING PROPERTIES OF A GENERALIZED . . . PHYSICAL REVIEW E68, 026104 ~2003!
the exponentg52.760.1 for a,20.5 may not seem to be
significantly different numerically from the BA valueg
53.0 to claim that it belongs to a different universality cla
However, as we will discuss later, the behaviors of the cl
tering coefficients are also significantly different here, wh
will support this claim. All the above results were obtain
for a network withN520 000 and using 100 different rea
izations of the network.

We calculated the average shortest path lengths and d
eter of the model at the phase boundary and found that t
two indeed scale logarithmically with the number of nodes
the network at the phase boundary, indicating that the sc
free network also has a small diameter.

The clustering properties of this model are studied in
tail in an attempt to compare the results with that of the r
networks. In order to study clustering we keptm5m053.
Defining the exponentsa andb in the following way:

C~N!}N2a ~2!

and

C~k!}k2b, ~3!

we find that a and b depend on the values ofa and b.
Strictly speaking, the assumption thatC(N) and C(k) have
simple power law behavior involves some approximations
it was shown recently by Klemm and Eguiluz@6# that for the
BA model C(N)}N21@ ln(N)#2 and not simplyC(N)}N20.75

as found numerically earlier@1#. However, for the range o
values ofN which we have considered,C(N)}N20.75 is a
good fit for the BA model and hence, we assume the sim
power law form for generala,b values. This will be suf-
fcient for our purpose of showing that the behavior of t
clustering coefficients on the phase boundary are depen
on the values ofa,b.

FIG. 1. The phase diagram of the network in thea-b plane.
Scale-free behavior is observed only at the boundary. The poiA
indicates a change in the critical behavior: to the right ofA the
critical behavior is of the BA type, while to its left we find a dif
ferent critical behavior.
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Figure 2 shows the behavior of the clustering coefficie
C(N) on the critical curve of the phase diagram as a funct
of the number of nodes. We find that fora.20.5, the data
are consistent with the behaviorC(N)}N20.75. The slope of
the curves decreases as we move away froma520.5 to
higher negative values, indicating thata decreases zero. Thi
is consistent with the idea that asa is made more negative
the nodes get connected to the nearer ones, making the
tering tendency higher. An interesting feature ofC(N) is that
it actually increases withN for large negative values ofa,
e.g., at the critical point corresponding toa524.0, a be-
comes negative. However, as the maximum value ofC(N)
can be unity, we believe that a negative value ofa indicated
that C(N) converges to a finite value forN→` for large
values ofa on the negative side.

Although the scaling behavior ofC(N) remains same for
all a.20.5, calculation ofC(N) for a fixedN shows that on
increasinga the clustering decreases, a result one can in
itively guess as for a large positivea, the nodes get con
nected to nodes at large distances making the clustering
dency lesser.

Figure 3 shows the variation ofC(k) againstk on the
phase boundary.C(k) is more or less a constant fora.
20.5, but for larger negative values ofa shows a decreas
with k. The behavior ofC(k) shows a clear power law deca
for very large negative values ofa. This is a feature found in
most real-world networks. For small negative values ofa
,20.5, there is a deviation from linearity in the log-log pl
for k,10, but for large values ofk one again gets a reason
ably good power law fitting.

We plot the values ofa and b in Fig. 4 at the critical
pointsac ,bc as a function ofa as we are more interested i
the role of the spatial distance dependence of the netw
For a50 andb51, we get the known valuesa50.75 and
b50. For all values ofa.20.5, the values ofa and b
remain the same on the critical phase boundary (bc51) and

FIG. 2. The clustering coefficients as a function ofN, the num-
ber of nodes for different values ofa on the phase boundary (a
523.0,22.0,21.0,0, and 1.0 from top to bottom!. The gradient in
the log-log plot gives the value ofa.
4-3
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are equal to that of the BA model. Fora,20.5, the values
of a and b are different at different points of the phas
boundary. In fact, the value ofa decreases while that ofb
increases to 1 asa approaches higher negative values.

We have also studied the behavior of the clustering co
fcients in the regions of the phase diagram where it is
scale-free. In the region where there is gelation,C(k) shows
a power law behavior again. This is expected as most of
nodes get attached to a single node and the clustering c
ficient decreases as a result. In the region where the stret
exponential behavior is observed, the clustering coeffic
does not show reasonable dependence onk at large values
of k.

In the present model,C(k)}k2b with a nonzero value ofb
for a,20.5 ~with b5bc) for which the network is scale
free and also has a small diameter. The power law beha
of C(k) is obtained as a natural consequence of Eq.~1! with-
out adding further steps in the growth process as in the o
models considered in recent literature. Surprisingly, both
present model and some of the other models considered
lier @4,6–8,11# give a scale-free behavior as well asC(k)
}k2b ~with bÞ0) although they differ by an importan
factor—the spatial dependence or geographical organiza
Hence, it is not possible to guess whether there is any s
organization present in the network simply by knowingb.
The real networks with geographical organization in fa
show thatb50, a result we can obtain from the prese
model when the spatial dependence given bya becomes
irrelevant and it becomes equivalent to the BA mod
Hence, we conclude that geographical organization is not

FIG. 3. The clustering coefficients as a function ofk, the number
of nodes for different values ofa on the phase boundary (a5
23.0,21.5,21.0, and 0 from top to bottom!. The gradient in the
log-log plot of b.
,
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key factor responsible for the resultb50, and the resultb
Þ0 can be achieved even after incorporating distance de
dent factors.

Our present results are for a one-dimensional netwo
But as observed in Ref.@15#, when aÞ0 and b51, the
two-dimensional network gives results which are quali
tively similar to those obtained in one dimension, we belie
that in higher dimensions also one would get similar resu

To summarize, we have studied a growing network in
Euclidean space where the link attachment probability
controlled jointly by two competing factors, i.e., the prefe
ential attachment and the magnitude of the link length. Th
two factors are tuned by the parametersa andb as defined
in Eq. ~1!. A critical boundary in thea-b phase plane sepa
rates the network from its ‘‘gel’’ phase to the ‘‘stretched e
ponential’’ phase. However, on the boundary between
two phases the network is scale-free. Numerical simulati
on a one-dimensional system indicate that on the crit
boundary the network crosses over from a BA universa
class (a.20.5) to a universal scale-free behavior (a,
20.5). The calculation of the exponentsa and b for the
clustering coeffcients defined in Eqs.~2! and ~3! show that
their values are nonuniversal in the regiona,20.5 on the
phase boundary, with an indication thata converges to zero
and b converges to unity asa approaches large negativ
values. Thus the network can be tuned to have different c
tering properties on the phase boundary.

We thank J. Kertesz for bringing Ref.@6# to our notice.
P.S. acknowledges support from DST Grant No. SP/S2
11/99.

FIG. 4. The values ofa and b on the phase boundary (a
5ac ,b5bc) as a function ofa.
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