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Clustering properties of a generalized critical Euclidean network
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Many real-world networks exhibit a scale-free feature, have a small diameter, and a high clustering tendency.
We study the properties of a growing network, which has all these features, in which an incoming node is
connected to itsth predecessor of degréewith a link of length¢ using a probability proportional tb{*(i“.

For «>—0.5, the network is scale-free gt=1 with the degree distributioR(k)o<k™” and y=3.0 as in the
Barabai-Albert model @=0,83=1). We find a phase boundary in the8 plane along which the network is
scale-free. Interestingly, we find a scale-free behavior eveBfoll for «<<—0.5, where the existence of a
different universality class is indicated from the behavior of the degree distribution and the clustering coeffi-
cients. The network has a small diameter in the entire scale-free region. The clustering coefficients emulate the
behavior of most real networks for increasing negative values of the phase boundary.
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Recent studies of many complex real-world networks ofoccur in many real-world networks, in a single model, have
diverse nature, e.g., social networks, biological networksbeen faced with certain difficulties. The first model to mimic
electronic communication networks, etc., reveal some strika small-world network is the Watts-Strogdi&/S) model[2].
ing similarities in their underlying structur¢4]. The diam-  Here, the nodes are arranged on a ring with links to the
eter D, a measure of the topological extension of the netnearest neighbors, and small-world features can be achieved
work, the clustering coefficienf, a measure of the local by rewiring the nearest neighbor bonds to randomly link an
correlations among the links of the network, and the nodakhrbitrary pair of nodes even with a very small probability.
degree distributionP(k) are some of the few important However, the nodal degree distribution in the WS model
quantities which exhibit the similarities among the differentfailed to show a scale-free feature. The Basi#bert (BA)
networks. Many of these networks exhibit small-world- model is a prototype of a SFN in which the network is grown
network like propertieg2], i.e., the diamete®(N) of the by adding nodes one by one, and a new node gets attached to
network scales logarithmically with the number of nodés an older one with a probability proportional to its degree.
while the clustering coefficient has a high value. In some ofAlthough the scale-free property was successfully achieved
these networks, there is no characteristic scale manifested land the network had a small diameter, the clustering coeffi-
the typical power law decay of the tail of the degree distri-cient C((N) showed a power law decay witK [6,1], while
bution: P(k)ok™? [3], whereP(k) is the number of nodes ((k) remained a constant with[1,4], thus failing to capture
which are linked withk other nodes. These networks are the feature of high clustering tendency of real networks.
called scale-free networkKSFN). Successful attempts to capture all the desirable features of

Typically, the clustering coefficient measures the condi-a network have been made by defining other models
tional probability that an arbitrary pair of nodes are linked,[4,6,7,9—1] subsequently. For example, in a deterministic
provided both are linked to a third node. The clustering co-growing graph[7], which is argued to simulate a citation
efficient can be studied as a function of two different vari- network, exact calculations showed that it has a small diam-
ables: C(N), the clustering coefficient per node averagedeter, a scale-free feature, as well &&k)>=1/k. In Refs.
over allN nodes as a function of the network sike and  [9,11], suitable modifications are made to generate triads
C(k), the clustering coefficient per node averaged over alland consequently a high clustering coeffcjeintan other-
nodes with degred as a function ofk. Obviously, C(N) wise BA type of growing network. In Ref§8,6], an old node
=32 P(K)C(K)/ZP(K). is deactivated with a probability proportional to its inverse

In some recent studi¢d,5], it was shown that several real degree in a growing network, and with an additional param-
networks, such as the actor network, language network, theter, which determines the probability of attachment to active
Internet at the autonomous system level, etc., which arer inactive nodes, the desired features of a real-world net-
known to exhibit a scale-free behavior and have small diamwork are achieved. In Ref10], spatial distances have been
eters, have another common feature, i(&k) has a power incorporated in some specified manner which also gave the
law dependence’(k)=k ™!, whereas the total clustering co- desired features of a real network to a large extent. A power
effcientC(N) has a high value. law dependence @f(k) can be obtained in deterministic and

Attempts to capture the three features of small diameteistochastic scale-free networks with hierarchical structure also
high clustering, and absence of a characteristic scale, whidi].

While in a majority of real-world scale-free networks
C(k)=1/k, some other networks such as the Internet router
*Email addresses: parongama@vsnl.net; paro@cubmb.ernet.in network, the power grid networillt,5] of the Western United
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have a scale-free behavioshowed a different behavior: In the present network, each incoming node gets bonded
C(k) shows no dependence or logarithmic dependencle on to mdistinct nodes. In order to study clustering propertias,

In Ref. [4], this behavior was argued to be due to the presshould be at least equal to tn&1 would lead to a treelike
ence of geographical organization in such networks in thetructure with no loops and all clustering coefficients are
sense that there is an actual physical connection between tlfmia"y zero here) Results for some limiting cases of the
nodes and the networks are defined in real space. A compalinode| defined by Eq(1) are known. Thex=0 and =1

son of the clustering coefficients in a model network with c3se corresponds to the scale-free BA netvf8ikNetworks
and without geographical organization could therefore helQuith =0 and arbitrary values oB, considered in18],

in understanding the relation between geographical organizzghowed that a scale-free behavior existed onlydsrl. For

Lo an lsterg beter 1 70U b ot out e -1, ter i tencency of e ncoming nodes 0 get co
ected to a single node and this behavior is termed “gela-

defined. o . N
In a network defined in real space, the spatial distancgon' For 8<1.0, the behavior of the degree distribution is
' ﬁtretched exponential. The effect of Euclidean distances was

between the nodes is expected to play an important role i : . ;
constructing the links. On the other hand, the rule of preferincorporated in a BAkind of networkl3,15,1§ by keeping

ential attachment has been very successful in achieving th& nonzero andg=1, where the network is defined in a
scale-free feature and the small diameter of a network. W&-dimensional Euclidean plane. It was found that the scale-
have, therefore, considered a growing network in which thdree behavior persists above a certain critical valueaof
preferential attachment probability of nodleexplicitly de- ~ Which depends on the spatial dimensiondlit§]. Below this
pends jointly on thexth power of the degrek; of the node Vvalue ofa, the stretched exponential behavior of the degree
as well as thedth power of the length of the link connect-  distribution was again observed. According [t6], it was
ing this node: concluded from the anaysis of the degree distribution that
a.=—1.0 in one dimension, but in Ref15], some further
analyses were made.g., the study of the cumulative degree
distribution, etco. which led to the conclusion that.=
—0.5.
The two parametera and 3 can be tuned continuously and ~ We considered a network on a one-dimensional space
independently over all real values. Here, we would like toWhose nodes are represented by points orxtnes and their
mention that although some networks are not defined in redtositions are randomly selected within the unit interval: 0
space, spatial distances are still expected to be implicitly<X=<1 with uniform, identically, and independently distrib-
involved, e.g., in a social network, people in the same localuted probabilities. At the initial stage of time=0, we have
ity are much more likely to know and influence each other.a set ofm, connected nodes. Then, at each time steye
Although the concept of geographical locality does not exisintroduce a new node and link it to a previous nodeth a
explicitly in all networks, one can still define a “closeness” probability given in Eq.(1). We vary botha and g and
factor in many networks, e.g., in the citation network, a pa-observe the behavior dP(k) to obtain a phase diagram.
per is likely to be cited with a higher probability when its Results formy=m=1 andmy=m=23 showed that the criti-
contents are close to that of the citing paper. cal behavior is independent of the valuermfas in the BA

In some earlier studigd0,13—17, spatial dependence in model. We noted the following interesting features.
a growing network has been studied where the attachment (1) In the a-$ plane, there exists a phase boundary along
probability is dependent on the spatial distances between thehich the network is scale-free. Above this boundary it
node. In Ref[10], the clustering coefficients were also cal- shows a gelationlike behavior, as in Rg18]. Below this
culated. However, the spatial dependence was not incorpdoundary, the degree distribution is stretched exponential as
rated in the way it could be systemetically studied. In thewas observed in Ref$15,16,18.
present study, the aims afa) to identify the regions where (2) Scale-free behavior is observed to occur at the critical
the network is scale free in the-8 plane,(b) to study the value 8.=1 for all values ofa=—0.5. It occurs at higher
behavior of the clustering coefficient as a function of thevalues of3 when the values o# are lower. From the data,
parametersy and 3, and(c) to check whether the diameter for values ofa<—2.0, we find that the phase boundary can
of the network and the average shortest distances scale logae fit to a linear form given by the equatian+ 3.=0.
rithmically with the number of nodes. (3) Although the scale-free property is observed along the

The attachment rule in Eq1) was in fact proposed by entire phase boundary, there is a difference in the behavior of
Yook et al.[13] in the context of modeling the Internet at the the degree distributioR (k). While P(k) ~k™” everywhere,
router level. An additional parameter, namely, the fractal di-y~2.7 for «<—0.5 andy=3.0 (as in the BA model for
mension of the space was also considered as the physica>—0.5.
layout of the nodes in this network form a fractal set deter- The phase diagram is shown in Fig. 1. We would like to
mined by the population of the globe. The model was studie@mphasize on two points from the above observations. First,
for a few points in the parameter spader the fractal di- even though the case+ 1 has been studied earligt8], the
mension equal to 1)5o find suitable values of the param- only point at which the scale-free behavior was observed was
eters for the Internet at the router level which turned out toat 8.=1, while here one can get a scale-free behavior even
be a=-1, B=1. at B.>1 by tuning the distance dependence factor. Second,

mi~kPee, (1)
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FIG. 2. The clustering coefficients as a functionNyfthe num-
ber of nodes for different values ef on the phase boundaryx(
=-3.0-2.0,-1.0,0, and 1.0 from top to bottoniThe gradient in
the log-log plot gives the value &t

FIG. 1. The phase diagram of the network in theB plane.
Scale-free behavior is observed only at the boundary. The point
indicates a change in the critical behavior: to the rightAothe
critical behavior is of the BA type, while to its left we find a dif-
ferent critical behavior.

Figure 2 shows the behavior of the clustering coefficients
the exponenty=2.7+0.1 for «<—0.5 may not seem to be C(N) on the critical curve of the phase diagram as a function
significantly different numerically from the BA valugz  of the number of nodes. We find that far>—0.5, the data
=3.0 to claim that it belongs to a different universality class.are consistent with the behavié(N)=N~%"5 The slope of
However, as we will discuss later, the behaviors of the clusthe curves decreases as we move away fiem—0.5 to
tering coefficients are also significantly different here, whichhigher negative values, indicating tratlecreases zero. This
will support this claim. All the above results were obtainedis consistent with the idea that asis made more negative,
for a network withN=20000 and using 100 different real- the nodes get connected to the nearer ones, making the clus-
izations of the network. tering tendency higher. An interesting featureC¢N) is that

We calculated the average shortest path lengths and diant-actually increases witlN for large negative values af,
eter of the model at the phase boundary and found that theseg., at the critical point corresponding to=—4.0, a be-
two indeed scale logarithmically with the number of nodes incomes negative. However, as the maximum valu€ (i)
the network at the phase boundary, indicating that the scalesan be unity, we believe that a negative valueaafdicated
free network also has a small diameter. that C(N) converges to a finite value fok—co for large

The clustering properties of this model are studied in devalues ofe on the negative side.
tail in an attempt to compare the results with that of the real Although the scaling behavior @i(N) remains same for
networks. In order to study clustering we kept=mgy=3. all @>—0.5, calculation of(N) for a fixedN shows that on

Defining the exponenta andb in the following way: increasinga the clustering decreases, a result one can intu-
a itively guess as for a large positive, the nodes get con-
C(N)=N 2 nected to nodes at large distances making the clustering ten-

dency lesser.
Figure 3 shows the variation af(k) againstk on the

C(k)ock P, (3)  phase boundaryC(k) is more or less a constant far>

—0.5, but for larger negative values af shows a decrease
we find thata and b depend on the values af and 8. with k. The behavior of(k) shows a clear power law decay
Strictly speaking, the assumption th&tN) and C(k) have for very large negative values ef. This is a feature found in
simple power law behavior involves some approximations asnost real-world networks. For small negative valuesaof
it was shown recently by Klemm and Eguil(&] that for the =~ < —0.5, there is a deviation from linearity in the log-log plot
BA model C(N) =N~ In(N)]?> and not simplyC(N)<N~%7>  for k<10, but for large values df one again gets a reason-
as found numerically earlidrl]. However, for the range of ably good power law fitting.
values ofN which we have considered(N)=N"%"is a We plot the values of and b in Fig. 4 at the critical
good fit for the BA model and hence, we assume the simpl@oints«., 3. as a function olx as we are more interested in
power law form for generak,B values. This will be suf- the role of the spatial distance dependence of the network.
fcient for our purpose of showing that the behavior of theFor =0 andB=1, we get the known values=0.75 and
clustering coefficients on the phase boundary are dependebt=0. For all values ofa>—0.5, the values of and b
on the values ofy, 8. remain the same on the critical phase bound@y=1) and

and
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FIG. 3. The clustering coefficients as a functiorkpthe number o
of nodes for different values ofr on the phase boundaryx& FIG. 4. The values ofa and b on the phase boundarya(

—3.0-1.5~-1.0, and 0 from top to bottomThe gradient in the =a.,B=B.) as a function ofx.
log-log plot of b.

key factor responsible for the resudt=0, and the resulb

are equal to that of the BA model. Fer<—0.5, the values . g can be achieved even after incorporating distance depen-
of a and b are different at different points of the phase yent factors.

boundary. In fact, the value @ decreases while that df Our present results are for a one-dimensional network.
increases to 1 a&s approaches hlghgr negative valugs. But as observed in Ref15], when @#0 and 8=1, the
~We have also studied the behavior of the clustering coefyo-dimensional network gives results which are qualita-
fcients in the regions of the phase diagram where it is nofjye|y similar to those obtained in one dimension, we believe
scale-free. In the region where there is gelatigfk) Shows hat in higher dimensions also one would get similar results.
a power law behavior again. This is expected as most of the 14 symmarize, we have studied a growing network in the
nodes get attached to a single node and the clustering cogfyclidean space where the link attachment probability is
ficient decreases as a result. In the region where the stretchggdntrolled jointly by two competing factors, i.e., the prefer-
exponential behavior is observed, the clustering coefficiengntial attachment and the magnitude of the link length. These
does not show reasonable dependence @b large values o factors are tuned by the parametersind 8 as defined
of k. b in Eq. (1). A critical boundary in thex-8 phase plane sepa-
In the present moded(k) k™" with a nonzero value di  4tes the network from its “gel” phase to the “stretched ex-
for a<—0.5 (with B=p,) for which the network is scale- ponential” phase. However, on the boundary between the
free and also has a small diameter. The power law behaviqfyo phases the network is scale-free. Numerical simulations
of C(k) is obtained as a natural consequence of#owith-  on a one-dimensional system indicate that on the critical
out adding further steps in the growth process as in the oth&joundary the network crosses over from a BA universality
models considered in recent literature. Surprisingly, both the|ass @>—0.5) to a universal scale-free behavior<
present model and some of the other models considered ar-g 5). The calculation of the exponengsand b for the
Ileri[b4,6—.8,11 give a scale-free behavior as well @)  cystering coeffcients defined in Eq®) and (3) show that
k™ (with b=#0) although they differ by an important tneir values are nonuniversal in the regiarc —0.5 on the
factor—the spatial dependence or geographical organlzatlorilynase boundary, with an indication thetonverges to zero
Hence, it is not possible to guess whether there is any suchq p converges to unity as approaches large negative

organization present in the network simply by knowibg  \4jyes. Thus the network can be tuned to have different clus-
The real networks with geographical organization in faCttering properties on the phase boundary.

show thatb=0, a result we can obtain from the present

model when the spatial dependence given doybecomes We thank J. Kertesz for bringing R€f6] to our notice.
irrelevant and it becomes equivalent to the BA model.P.S. acknowledges support from DST Grant No. SP/S2/M-
Hence, we conclude that geographical organization is not th&1/99.
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